Evaluation and treatment of high flow arteriovenous fistulas after successful renal transplant

George Gkotsis MD, William Jennings MD, Alexandros Mallios MD, Kevin Taubman MD
DISCLOSURE POLICY
It is the policy of The University of Oklahoma Health Sciences Center College of Medicine to ensure balance, independence, objectivity and scientific rigor in all its educational programs. All faculty participating in these programs are expected to disclose to the program audiences any real or apparent conflict of interest related to the content of their presentation.

This presentation contains no conflict of interest.
Dilemma of a functional vascular access following successful renal transplant:

- High output cardiac failure and pulmonary hypertension are potential complications of high flow AVFs. These findings are thought to be more common when access flows exceed 1200-1500 ml/min.
- Kidney transplant failure will occur in up to 34% of patients after 5 years.

AVF Observation versus Ligation?

Objectives

• We review a series of successful renal transplant patients with high flow AV Fistulas.
• Access flow reduction was established using a simple precision banding procedure with real time ultrasound flow measurements, targeting final access flow volume to 500-800 ml/min.
• Our goal was resolution of high access flow and associated physical findings while preserving AV Fistula functional patency.
Materials and Methods

- Twelve patients were referred for high flow AVF evaluation post successful renal transplant, medical records retrospectively reviewed.
- Eight (66%) were male, and one (8%) obese. Ages were 15-73 years (mean=42). The AVFs were established 24-86 months previously.
- In addition to physical examination (heart rate and the presence or absence of a cardiac murmur before and after AVF compression), each patient had ultrasound flow measurement before and after temporary compression of the access with digital occlusion for 2-3 minutes.
- Pre and post-bandung flow rates were included in the analysis.
Precise banding of an AVF using a coronary dilator as a dowel for reliable sizing of the restriction site. The restriction is created adjacent to the AVF anastomosis using polypropylene suture and sized in one-half millimeter increments, measuring AVF flow, until the target access flow is achieved (500-800ml/min).
Ultrasound image of an anteriovenous fistula (AVF) following precision restriction (banding) using real time flow measurements to guide degree of restriction.

Results

- 11/12 patients underwent a precision banding procedure with real-time flow monitoring. (One patient with poor cardiac function underwent immediate AVF ligation with dramatic improvement in cardiac status.)

- Mean access flow was 2280 ml/min (range 1148-3320 ml/min) before access banding and was 598 ml/min (range 481-876 ml/min) after flow reduction (p<0.01).

- The mean pulse rate declined after AVF-comp from 90/min to 72/min (range 110-78).

- 6 patients had a pre-compression cardiac flow murmur that disappeared with temporary AVF-comp.
 ---Each AVF remained patent although one individual later requested ligation for cosmesis.
 ---Two patients had renal transplant failure and later successfully used the AVF.
 ---Follow-up post banding was 1-18 months (mean=12).
Results (cont.)

<table>
<thead>
<tr>
<th>FLOW Pre-Banding (ml/min)</th>
<th>FLOW Post-Banding (ml/min)</th>
<th>PULSE Pre-Banding (rate/min)</th>
<th>PULSE Post-Banding (rate/min)</th>
<th>Final banding diameter (mm)</th>
<th>Pre-Banding Murmur (present)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3045</td>
<td>622</td>
<td>78</td>
<td>68</td>
<td>3</td>
<td>Yes-resolved</td>
</tr>
<tr>
<td>1789</td>
<td>488</td>
<td>90</td>
<td>72</td>
<td>3</td>
<td>Yes-resolved</td>
</tr>
<tr>
<td>2288</td>
<td>622</td>
<td>98</td>
<td>72</td>
<td>3</td>
<td>Yes-resolved</td>
</tr>
<tr>
<td>1780</td>
<td>598</td>
<td>82</td>
<td>64</td>
<td>3.5</td>
<td>Yes-resolved</td>
</tr>
<tr>
<td>1342</td>
<td>550</td>
<td>92</td>
<td>72</td>
<td>3.5</td>
<td>Yes-resolved</td>
</tr>
<tr>
<td>1148</td>
<td>510</td>
<td>84</td>
<td>82</td>
<td>3.5</td>
<td>Yes-resolved</td>
</tr>
<tr>
<td>2850</td>
<td>540</td>
<td>110</td>
<td>82</td>
<td>3.5</td>
<td>Yes-resolved</td>
</tr>
<tr>
<td>3320</td>
<td>599</td>
<td>78</td>
<td>62</td>
<td>4</td>
<td>Yes-resolved</td>
</tr>
<tr>
<td>2650</td>
<td>876</td>
<td>92</td>
<td>68</td>
<td>4</td>
<td>Yes-resolved</td>
</tr>
<tr>
<td>2510</td>
<td>632</td>
<td>86</td>
<td>72</td>
<td>4</td>
<td>Yes-resolved</td>
</tr>
<tr>
<td>1220</td>
<td>0</td>
<td>92</td>
<td>64</td>
<td>ligated</td>
<td></td>
</tr>
<tr>
<td>2444</td>
<td>528</td>
<td>90</td>
<td>70</td>
<td>4</td>
<td>Yes-resolved</td>
</tr>
</tbody>
</table>
Conclusions

• Hemodialysis vascular access patients with high flow AVFs had successful resolution of high cardiac output findings and maintenance of access patency using a precision banding procedure.
• Yearly examination of transplanted patients with access flow measurement seems warranted. Flow reduction in symptomatic patients or when AVF flow exceeds 1200-1500 ml/min is recommended.
• Further study is warranted to substantiate these recommendations.
References

• Jan Malik, When Is Access Flow Too High And What To Do About It?, 10th Annual Controversies in Dialysis Access - San Francisco, USA - October 24-25, 2013